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Basic Concepts



The Simplest Relationship Between Two Variables

• Suppose you want to study the impact of one extra euro spent in TV

advertising tv on sales s. What do you need to do?

• To collect data! For eachmonth i = 1, . . . , n you would record the

expenditure in TV ads tvi and the sales level si

• But how do these variables relate to each other?

• The simplest quantitative relationship we can establish is linear:

si = β0 + β1tvi + εi
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The Ordinary Least Squares Estimators

si = β0 + β1tvi + εi

• How to estimate the β’s?

• Solving the following problem:

min{
β̂0,β̂1

}
n∑

i=1

ε̂2
i =

n∑
i=1

(si − ŝi)
2 =

n∑
i=1

(
si − (β̂0 + β̂1tvi)

)2

• The solutions are the OLS estimators:

β̂0 = s − β̂1tv and β̂1 =

∑n
i=1

(
tvi − tv

)
(si − s)∑n

i=1
(
tvi − tv

)2 = ρs,tv
σs

σtv
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Convenient Properties … Under Some Underlying Assumptions

The OLS estimators are…

1. Best: they have theminimum

variance σ2
β among all the

unbiased linear estimators (a.k.a.

efficient)

2. Linear: they are linear functions

of the observed values

3. Unbiased: E
[
β̂|tv

]
= β

… if and only if:

1. Linearity

2. Random Sampling

3. No perfect colinearity

4. E [ε|tv] = 0
5. Homoskedasticity: Var [ε|tv] = σ2
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Assessing a Linear Regression



The Statistical Significance of the Estimates

• Our estimators are random numbers— different samples lead to

different estimates

• Can we rule out the hypothesis that our variable selection is useless?

Can we reject: H0 : β1 = 0?
• If β1 = 0, how likely would it be to get an estimate as the one we’ve got?

• We need to choose a level of significance α (usually α > 5)
• Check the p-value (the cumulative probability of getting a lower value to β1

lower than β̂1): reject if p-value< α
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The Quality of the Overall Fit

How good a linear regression is

depends on howwell themodel

describes the data (how close the

points are to the line).

Themeasure of the overall fit is given

by the Coefficient of Determination:

R2 =
ESS
TSS

Total Sum of Squares:

TSS =
n∑

i=1

(si − s)2

Explained Sum of Squares:

ESS =
n∑

i=1

(ŝi − s)2
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(ŝi − s)2

5/7



Generalizing OLS



The Multiple Linear Regression

• Wemay want to considermore than one explanatory variables:

yi = β0 + β1x1,i + β2x2,i + · · ·+ βkxk,i + εi

• Thematricial representation:

y = Xβ + ε

y =


y1

y2
...

yn

 X =


1 x1,1 x2,1 . . . xk,1

1 x1,2 x2,2 . . . xk,2

1 ...
...

. . .
...

1 x1,n x2,n . . . xk,n

 β =


β0

β1

β2
...

βk

 ε =


ε1

ε2

ε3
...

εn


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The Multiple Linear Regression

• The OLS estimators are, then, the solution of the problem:

min
β̂

ε̂′ε̂

ε̂ = y − ŷ = y − Xβ̂

• The solution:

β̂ = (X ′X)
−1 X ′y
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