Reassessing the Role of Capital
in the Dynamics of the Labor Share

Ricardo Gouveia-Mendes

Iscte – University Institute of Lisbon

July 5, 2025
18th Annual Meeting of The Portuguese Economic Journal

Introduction

Introduction

The Decline of the Labor Share in the US

Introduction

Motivation

  • Consensual 6 p.p. decline since the 1980s across developed countries (Karabarbounis 2024)
  • The labor share is central to research on inequality
  • Concerns about:
    • Living standards of the poor
    • Social stability
    • Economic growth sustainability

Introduction

Literature Focus on the Primary Mechanism

Several declining mechanisms (Grossman and Oberfield 2022)

Introduction

Literature Focus on the Primary Mechanism

But…

Introduction

This Paper

  • Labor share stability demands offsetting forces
  • Investment-embodied technological progress decreases the relative price of investment goods
  • The resulting inputs reallocation can act as a countervailing factor of the decline of the labor share
  • When there are sectoral differences in capital-output elasticities

Introduction

The Decline of the Relative Price of Investment Goods

Introduction

The Decline of the Relative Price of Investment Goods

Introduction

Approach

  • Standard two-sector growth model
  • Three key assumptions
    • Unitarian capital-labor elasticity of substitution
    • Different capital-output elasticities across sectors
    • Investment-embodied technological progress

Introduction

Five Main Findings

  1. Labor share changes are transitional
  2. Triggered by capital redistribution across sectors
  3. Require different sectoral capital-output elasticities
  4. Occur despite a unitary capital-labor elasticity of substitution
  5. Increases can happen even when r>g (Piketty and Zucman 2014; Piketty 2014)

The Model

The Model

Setup: Households Preferences


Preferences are described by the utility function: U = \sum_{t=0}^{+\infty} \beta^t \frac{\left(C_{t}\right)^{1-\phi}}{1-\phi} \tag{1} with \phi^{-1}\geq 0 and 0<\beta<1

The Model

Setup: Labor and Capital

  • Labor supply is exogenous and homogeneous:

L_{t} = L_{0} \left(1+g^{_L}\right)^t, \quad g^{_L}\geq 0 \tag{2}

  • Capital is homogeneous and evolves according to:

K_{t+1} = K_{t} (1-\delta) + I_{t}, \quad 0<\delta<1 \tag{3}

The Model

Setup: Production

  • Two sectors: consumption (C) and investment (I)
  • Both use two inputs: capital (K) and labor (L)
  • In each sector j\in\{C,I\}:

Y^{_j}_{t} = \left(K_{t}^{_j}\right)^{\alpha^{_j}} \left(A^{_j}_{t} L_{t}^{_j}\right)^{1-\alpha^{_j}} \tag{4} with 0<\alpha^{_j}<1 and \alpha^{_j}\neq\alpha^{_{-j}}

The Model

Setup: Technological Progress


  • Harrod neutral technological progress: A^{_j}_{t} = (1+g^{_{A^j}})^t A^{_j}_0, \quad g^{_{A^j}} \geq 0 \tag{5}
  • Investment-embodied technological progress means: g^{_{A^I}} > g^{_{A^C}}

The Model

Setup: Resources Constraints for Inputs and Outputs


K_{t} = K^{_C}_{t} + K^{_I}_{t} \tag{6} L_{t} = L^{_C}_{t} + L^{_I}_{t} \tag{7} Y^{_C}_{t} = C_{t} \tag{8} Y^{_I}_{t} = I_{t} \tag{9}

The Model

Setup: Some Convenient Definitions

  • Shares of inputs allocated to sector I:

s^{_K}_{t} \equiv \frac{K^{_I}_{t}}{K_{t}} s^{_L}_{t} \equiv \frac{L^{_I}_{t}}{L_{t}}

  • Capital per effective worker:

k_{t} \equiv \frac{K_{t}}{A^{_I}_{t} L_{t}}

The Model

Planner Problem

  • A benevolent social planner chooses the path for:
    • Shares of inputs \{s^{_K}_{t},s^{_L}_{t}\}_{t=0}^{+\infty}
    • Capital per effective worker \{k_{t+1}\}_{t=0}^{+\infty}
  • That maximize the utility function in Equation 1
  • Subject to the resources constraints in Equation 6 to Equation 9
  • Given: \beta, \phi, \alpha^{_C}, \alpha^{_I}, \delta, g^{_{A^C}}, g^{_{A^I}}, and g^{_L}, and K_0

The Model

Solution: Planner Problem

  • Single solution to s^{_K}_{t}, s^{_L}_{t} and k_{t+1} Details
  • Property: \alpha^{_C}=\alpha^{_I}=\alpha \Rightarrow s^{_L}_{t}=s^{_K}_{t}
  • With these values we can determine all the quantities
    • Inputs in each sector: K^{_C}_{t}, K^{_I}_{t}, L^{_C}_{t} and L^{_I}_{t}
    • Outputs Y^{_C}_{t} and Y^{_I}_{t}
    • Allocations C_{t} and I_{t}

The Model

Solution: Decentralized Competitive Equilibrium

  • Identical conditions for quantities and conditions for prices, namely:

\begin{align} \frac{1}{q_{t}} \equiv \frac{P^{_I}_{t}}{P^{_C}_{t}} &= \frac{\alpha^{_C}}{\alpha^{_I}} \left(\frac{A^{_C}_{t}}{A^{_I}_{t}}\right)^{1-\alpha^{_C}} \left(k_{t}\right)^{\alpha^{_C}-\alpha^{_I}} \times \notag\\ &\quad \times \left[ \left(\frac{s^{_K}_{t}}{s^{_L}_{t}}\right)^{1-\alpha^{_I}} \bigg/ \left(\frac{1 - s^{_K}_{t}}{1 - s^{_L}_{t}}\right)^{1-\alpha^{_C}} \right] \end{align} \tag{10}

  • Notice that: \alpha^{_C}=\alpha^{_I}=\alpha \Rightarrow 1/q_{t} = \left(A^{_C}_{t}/A^{_I}_{t}\right)^{1-\alpha}

Details

The Model

Determinants and Long-Run Behavior of The Labor Share

m^{_L}_{t} \equiv \frac{w^{_I}_{t} L_{t}}{Y_{t}} = \frac{\alpha^{_I} (1-\alpha^{_C})+ (\alpha^{_C}- \alpha^{_I}) s^{_K}_{t}} {\alpha^{_I} + \left(\alpha^{_C} - \alpha^{_I}\right) s^{_K}_{t}} \tag{11}

  • Notice that: \alpha^{_C}=\alpha^{_I}=\alpha \Rightarrow m^{_L}_{t}=1-\alpha
  • A Balanced Growth Path in this economy requires s^{_K}_{t} to be constant over time
  • So, the labor share is constant in the long-run Details

The Model

Transition Dynamics of The Labor Share to the BGP Level

  • Along a transition path of s^{_K} to the steady state:

\frac{\mathrm{d} m^{_L}_{t}}{\mathrm{d} s^{_K}_{t}} = \frac{\left(\alpha^{_C} - \alpha^{_I}\right) \alpha^{_I}\alpha^{_C}}{\left(\alpha^{_C} s^{_K}_{t} + \alpha^{_I} \left(1 - s^{_K}_{t}\right)\right)^2} \tag{12}

  • Hence:
    • if \alpha^{_C}>\alpha^{_I}: m^{_L}_{t} moves in the same direction of s^{_K}_{t}
    • if \alpha^{_C}<\alpha^{_I}: m^{_L}_{t} moves in the opposite direction of s^{_K}_{t}

Calibration

Calibration

Baseline Parameters

Parameter Value Source/Calibration target
\beta 0.96 Prescott (1986)
\phi^{-1} 0.65 Vissing-Jørgensen (2002)
\delta 3.8% 1980–2024 average from Feenstra, Inklaar, and Timmer (2015)
g^{_L} 0.9% 1980–2024 g^{_{Pop}} from US Census Bureau (2025)

Calibration

Baseline Parameters

Parameter Value Source/Calibration target
\alpha^{_I} 26% Basu et al. (2013)
\alpha^{_C} 50% 1980–2024 of q_{t}^{-1} and K/Y
g^{_{A^C}} 1.0% 1980–2024 of q_{t}^{-1} and K/Y
g^{_{A^I}} 2.7% 1980–2024 of q_{t}^{-1} and K/Y
k_0 7.1 Initial level of K/Y

BGP values

Results

Results

Calibration Targets

Results

The Transition Path of k_{t+1}

  • Initial excess of capital enables high consumption and low investment
    • s^{_K}_0=12.26\%<14.47\% =s^{_K}_*
    • s^{_L}_0=28.44\%<32.5\% = s^{_L}_*
  • Then, depreciation and technological progress trigger the transfer of inputs from sector C to sector I Plot shares

Results

The Transition Path of k_{t+1}

  • Sector switching always equalizes the Marginal Rate of Technical Substitution across sectors \frac{1-\alpha^{_C}}{\alpha^{_C}} \frac{\alpha^{_I}}{1-\alpha^{_I}} = \frac{1-s^{_K}_{t}}{1-s^{_L}_{t}} \bigg/ \frac{s^{_K}_{t}}{s^{_L}_{t}}
  • Both sectors become more capital intensive

Results

The Transition Path of the Labor Share

  • Recall that: m^{_L}_{t} \equiv \left(w^{_I}_{t} L_{t}\right)/Y_{t}
  • The real wage w^{_I} increases due to higher capital intensity
  • Impact on total output Y_{t}\equiv q_{t} Y^{_C}_{t} + Y^{_I}_{t} is unclear
    • Y^{_C}_{t} decreases and Y^{_I}_{t} increases due to input sector switching
    • q_{t}^{-1} decreases (mainly) because g^{_{A^I}}>g^{_{A^C}} Eq. Condition

Results

The Labor Share

Results

The Labor Share

  • We already knew that m^{_L}_t and s^{_K}_{t} move in opposite directions when \alpha^{_C}>\alpha^{_I}
  • The increase in the real wage dominates over the increase in aggregate output
  • The labor share increases around +1p.p.
  • According to Piketty, this requires r-g<0

Results

Piketty’s r>g Channel is Missing

Concluding Remarks

  • Long-run labor share unaffected
  • Short-term labor share changes driven by sectoral capital-output elasticities
  • An increase in the labor share is expected when:
    • Consumption goods sector has a higher capital-output elasticity than investment goods
    • Capital per effective worker is above the steady state

Concluding Remarks

  • Mechanism does not require \sigma_{L,K}>1
  • The increase happens despite r>g
  • Acts as a countervailing mechanism to the observed decline in labor share over the past four decades

Open Questions

  • What does \alpha^{_C}>\alpha^{_I} mean? And what is the exact magnitude of the difference?
  • Why was the capital per effective worker above the steady state in the 80s?
  • What are the effects of other declining mechanisms?
  • How does the welfare distribution change with the relative price?

Appendix

Relative Prices of Investment

By Type of Asset

Introduction

Shares of Investment

By Type of Asset

Introduction

The Capital-Output Ratio in the US


  • Capital stock is the black sheep in National Accounts
  • Perpetual inventory method vs. balance sheet data

First Best Solution

Equilibrium Condition for Variable s^{_K}_{t}


\begin{align} \left(1+g^{_{A^C}}\right)^{(1-\alpha^{_C}) (\phi - 1)} \left(1+g^{_{A^I}}\right)^{1-\alpha^{_C} (1-\phi)} \left(1+g^{_L}\right)^\phi = \\ = \left(\frac{k_{t}}{k_{t+1}}\right)^{\alpha^{_I} - \alpha^{_C} (1-\phi)} \left(\frac{s^{_L}_{t}}{s^{_L}_{t+1}}\right)^{1-\alpha^{_I}} \left(\frac{s^{_K}_{t+1}}{s^{_K}_{t}}\right)^{1-\alpha^{_I}} \times \\ \times \left(\frac{1-s^{_L}_{t+1}}{1-s^{_L}_{t}}\right)^{(1-\alpha^{_C}) (1-\phi)} \left(\frac{1-s^{_K}_{t}}{1-s^{_K}_{t+1}}\right)^{1-\alpha^{_C} (1-\phi)} \times \\ \times \beta \left[\alpha^{_I} \left(k_{t+1}\right)^{\alpha^{_I}-1} \left(\frac{s^{_L}_{t+1}}{s^{_K}_{t+1}}\right)^{1-\alpha^{_I}} +1-\delta\right] \end{align} \tag{13}

First Best Solution

Equilibrium Conditions for Variables s^{_L}_{t} and k_{t+1} and Transversality Condition

s^{_L}_{t} = \left[\frac{\alpha^{_I}}{1-\alpha^{_I}} \frac{1-\alpha^{_C}}{\alpha^{_C}} \frac{1-s^{_K}_{t}}{s^{_K}_{t}} + 1\right]^{-1} \tag{14} k_{t+1} = k_{t} \frac{1-\delta}{ \left(1 + g^{_{A^I}}\right) \left(1 + g^{_L}\right)} + \frac{ \left(s^{_K}_{t} k_{t}\right)^{\alpha^{_I}} \left(s^{_L}_{t}\right)^{1 - \alpha^{_I}} }{ \left(1 + g^{_{A^I}}\right) \left(1 + g^{_L}\right) } \tag{15} \begin{align} \lim_{t\to +\infty} \frac{\beta^{t}}{C_{t}^{\phi}} \frac{\alpha^{_C}}{\alpha^{_I}} \left(k_{t}\right)^{\alpha^{_C} - \alpha^{_I}} \left(\frac{s^{_K}_{t}}{s^{_L}_{t}}\right)^{1-\alpha^{_I}} \times\\ \times \left(\frac{1-s^{_L}_{t}}{1-s^{_K}_{t}} \frac{A_{t}^{_C}}{A^{_I}_{t}}\right)^{1 - \alpha^{_C}} K_{t+1} = 0 \end{align} \tag{16}

Planner solution

First Best Solution

Equilibrium Conditions for the Original Variables

C_{t} = \left((1-s^{_K}_{t}) K_{t}\right)^{\alpha^{_C}} \left((1-s^{_L}_{t}) A^{_C}_{t} L_{t}\right)^{1-\alpha^{_C}} \tag{17} I_{t} = \left(s^{_K}_{t} K_{t}\right)^{\alpha^{_I}} \left(A^{_I}_{t} s^{_L}_{t} L_{t}\right)^{1-\alpha^{_I}} \tag{18} L^{_I}_{t} = s^{_L}_{t} L_{t} \tag{19} K^{_I}_{t} = s^{_K}_{t} K_{t} \tag{20} L^{_C}_{t} = L_{t} - L^{_I}_{t} \tag{21} K^{_C}_{t} = K_{t} - K^{_I}_{t} \tag{22} K_{t+1} = k_{t+1} A^{_I}_{t+1} L_{t+1} \tag{23}

Planner solution

Decentralized Economy

Firms Problem

  • Firms in each sector j\in\{C,I\} maximize profits:

\Pi^{_j}_{t} = P^{_j}_{t} Y^{_j}_{t} - W_{t} L^{_j}_{t} - R_{t} K^{_j}_{t} \tag{24}

  • Subject to production technologies in Equation 4
  • Given:
    • Price of its own output P^{_j}_{t}
    • Nominal cost rate of inputs: W_{t} and R_{t}

Decentralized Economy

Households Problem

  • Households maximize utility in Equation 1
  • Subject to a budget constraint:

q_{t} C_{t} + I_{t} \leq w^{_I}_{t} L_{t} + r^{_I}_{t} K_{t} \tag{25}

  • Given:
    • Relative price q_{t} \equiv P^{_C}_{t}/P^{_I}_{t}
    • Real returns to inputs: w^{_I}_{t} \equiv W_{t}/P^{_I}_{t} and r^{_I}_{t} \equiv R_{t}/P^{_I}_{t}

Competitive Equilibrium

Definition

  • Sequence for:
    • Inputs \{L^{_C}_{t}, L^{_I}_{t}\}_{t=0}^{+\infty} and \{K^{_C}_{t}, K^{_I}_{t}, K_{t+1}\}_{t=0}^{+\infty}
    • Outputs \{C_{t}, I_{t}\}_{t=0}^{+\infty}
    • Real returns to inputs \{w^{_I}_{t}\}_{t=0}^{+\infty} and \{r^{_I}_{t}\}_{t=0}^{+\infty}
    • Relative price \{q_{t}\}_{t=0}^{+\infty}

Competitive Equilibrium

Definition

  • So that:
    • Firms solve their optimization problem
    • Households solve their optimization problem
    • Input and output markets clear according to Equation 6 to Equation 9

Competitive Equilibrium

Solution

  • Same equilibrium conditions as in the First Best Solution for inputs and outputs
  • Equilibrium conditions for real returns to inputs:

r^{_I}_{t} = \alpha^{_I} \left(\frac{s^{_L}_{t}}{s^{_K}_{t}}\right)^{1-\alpha^{_I}} \left(k_{t}\right)^{\alpha^{_I}-1} \tag{26}

w^{_I}_{t} = (1-\alpha^{_I}) A^{_I}_{t} \left(\frac{s^{_K}_{t}}{s^{_L}_{t}}\right)^{\alpha^{_I}} \left(k_{t}\right)^{\alpha^{_I}} \tag{27}

Relative price

Balanced Growth Path

Condition for s^{_L}_{*}

  • Assume that k_{t} = k_{*} and s^{_K}_{t} = s^{_K}_{*}, for some t
  • Then, a solution for the Planner Problem exists if and only if:

s^{_L}_{*} = \left[\frac{\alpha^{_I}}{1-\alpha^{_I}} \frac{1-\alpha^{_C}}{\alpha^{_C}} \frac{1-s^{_K}_{*}}{s^{_K}_{*}} + 1\right]^{-1} \tag{28}

Balanced Growth Path

Conditions for s^{_K}_{*} and k_{*}

Confirming our guess about the stationarity of s^{_K} and k:

\begin{align} s^{_K}_{*} &= \left[ \frac{ \left(1+g^{_{A^C}}\right)^{(1-\alpha^{_C}) (\phi - 1)} \left(1+g^{_{A^I}}\right)^{1-\alpha^{_C} (1-\phi)} \left(1+g^{_L}\right)^\phi }{ \beta \alpha^{_I} \left(\left(1 + g^{_{A^I}}\right) \left(1 + g^{_L}\right) - (1-\delta)\right) } - \right. \notag\\ &\quad \left.- \frac{1-\delta}{ \left(1 + g^{_{A^I}}\right) \left(1 + g^{_L}\right) - (1-\delta) } \right]^{-1} \end{align} \tag{29}

k_{*} = \left( \frac{ \left(s^{_K}_{*}\right)^{\alpha^{_I}} \left(s^{_L}_{*}\right)^{1 - \alpha^{_I}} }{ \left(1 + g^{_{A^I}}\right) \left(1 + g^{_L}\right) - (1-\delta) } \right)^\frac{1}{1- \alpha^{_I}} \tag{30}

Balanced Growth Path

Growth Rates of the Original Variables

\begin{aligned} g^{_{K^I}} = g^{_{K^C}} = g^{_K} = g^{_I} &= \left(1+g^{_{A^I}}\right) \left(1+g^{_L}\right) - 1 \\ g^{_{L^I}} = g^{_{L^C}} &= g^{_L} \\ g^{_C} &= \left(\frac{1+g^{_{A^I}}}{1+g^{_{A^C}}}\right)^{\alpha^{_C}} \left(1+g^{_{A^C}}\right) \left(1+g^{_L}\right) - 1 \\ g^{_{r^I}} &= 0 \\ g^{_{w^I}} &= g^{_{A^I}} \\ g^{_q} &= \left(\frac{1+g^{_{A^I}}}{1+g^{_{A^C}}}\right)^{1-\alpha^{_C}} -1 \end{aligned}

Labor share

Balanced Growth Path

Values Resulting from Calibration

Variable Value
s^{_K}_* 14.47%
s^{_L}_* 32.50%
k_* 5.54
g^{_C}_* 2.76%
g^{_I}_*=g^{_Y}_*=g^{_K}_*=g^{_{K^C}}_*=g^{_{K^I}}_* 3.62%
g^{_{w^I}}_* 2.70%
g^{_{r^I}}_* 0.00%

Calibration

Simulation of the Core Variables

What’s happening?

References

Acemoglu, Daron, and Pascual Restrepo. 2020. Robots and Jobs: Evidence from US Labor Markets.” Journal of Political Economy 128 (6): 2188–2244. https://doi.org/10.1086/705716.
———. 2022. Tasks, Automation, and the Rise in US Wage Inequality.” Econometrica 90 (5): 1973–2016. https://doi.org/10.3982/ecta19815.
Autor, David, David Dorn, Lawrence F. Katz, Christina Patterson, and John Van Reenen. 2020. The Fall of the Labor Share and the Rise of Superstar Firms.” The Quarterly Journal of Economics 135 (2): 645–709. https://doi.org/10.1093/qje/qjaa004.
Barkai, Simcha. 2020. Declining Labor and Capital Shares.” The Journal of Finance 75 (5): 2421–63. https://doi.org/10.1111/jofi.12909.
Basu, Susanto, John Fernald, Jonas Fisher, and Miles Kimball. 2013. Sector-Specific Technical Change.” Manuscript. Federal Reserve Bank of San Francisco.
De Loecker, Jan, Jan Eeckhout, and Gabriel Unger. 2020. The Rise of Market Power and the Macroeconomic Implications.” The Quarterly Journal of Economics 135 (2): 561–644. https://doi.org/10.1093/qje/qjz041.
Elsby, Michael W. L., Bart Hobijn, and Ayşegül Şahin. 2013. “The Decline of the US Labor Share.” Brookings Papers on Economic Activity 2013 (2): 1–63.
Feenstra, Robert C., Robert Inklaar, and Marcel P. Timmer. 2015. The Next Generation of the Penn World Table.” American Economic Review 105 (10): 3150–82. https://doi.org/10.1257/aer.20130954.
Glover, Andrew, and Jacob Short. 2020. “Can Capital Deepening Explain the Global Decline in Labor’s Share?” Review of Economic Dynamics 35 (January): 35–53. https://doi.org/10.1016/j.red.2019.04.007.
Greenwood, Jeremy, Zvi Hercowitz, and Per Krusell. 1997. Long-Run Implications of Investment-Specific Technological Change.” The American Economic Review 87 (3): 342–62. https://www.jstor.org/stable/2951349.
Grossman, Gene M., Elhanan Helpman, Ezra Oberfield, and Thomas Sampson. 2021. Endogenous Education and Long-Run Factor Shares.” American Economic Review: Insights 3 (2): 215–32. https://doi.org/10.1257/aeri.20200350.
Grossman, Gene M., and Ezra Oberfield. 2022. The Elusive Explanation for the Declining Labor Share.” Annual Review of Economics 14 (1): 93–124. https://doi.org/10.1146/annurev-economics-080921-103046.
Harrison, Ann. 2024. Disentangling Various Explanations for the Declining Labor Share: Evidence from Millions of Firm Records.” National Bureau of Economic Research. https://doi.org/10.3386/w32015.
Hubmer, Joachim. 2023. The Race Between Preferences and Technology.” Econometrica 91 (1): 227–61. https://doi.org/10.3982/ecta18580.
Karabarbounis, Loukas. 2024. Perspectives on the Labor Share.” Journal of Economic Perspectives 38 (2): 107–36. https://doi.org/10.1257/jep.38.2.107.
Karabarbounis, Loukas, and Brent Neiman. 2014. “The Global Decline of the Labor Share.” The Quarterly Journal of Economics 129 (1): 61–104. https://doi.org/10.2307/26372544.
Koh, Dongya, Raül Santaeulàlia-Llopis, and Yu Zheng. 2020. Labor Share Decline and Intellectual Property Products Capital.” Econometrica 88 (6): 2609–28. https://doi.org/10.3982/ecta17477.
Lawrence, Robert Z. 2015. “Recent Declines in Labor’s Share in US Income: A Preliminary Neoclassical Account.” National Bureau of Economic Research.
Piketty, Thomas. 2014. Capital in the Twenty-First Century. Harvard University Press. http://www.jstor.org/stable/j.ctt6wpqbc.
Piketty, Thomas, and Gabriel Zucman. 2014. Capital is Back: Wealth-Income Ratios in Rich Countries 1700–2010.” The Quarterly Journal of Economics 129 (3): 1255–1310. https://doi.org/10.1093/qje/qju018.
Prescott, Edward C. 1986. “Theory Ahead of Business Cycle Measurement.” Quarterly Review 10 (4). https://doi.org/10.21034/qr.1042.
Solow, Robert M. et al. 1960. “Investment and Technical Progress.” Mathematical Methods in the Social Sciences 1 (10): 48–93.
US Census Bureau. 2025. International Database.”
Vissing-Jørgensen, Annette. 2002. Limited Asset Market Participation and the Elasticity of Intertemporal Substitution.” Journal of Political Economy 110 (4): 825–53. https://doi.org/10.1086/340782.