July 5, 2025
18th Annual Meeting of The Portuguese Economic Journal
Several declining mechanisms (Grossman and Oberfield 2022)
But…
Preferences are described by the utility function: U = \sum_{t=0}^{+\infty} \beta^t \frac{\left(C_{t}\right)^{1-\phi}}{1-\phi} \tag{1} with \phi^{-1}\geq 0 and 0<\beta<1
L_{t} = L_{0} \left(1+g^{_L}\right)^t, \quad g^{_L}\geq 0 \tag{2}
K_{t+1} = K_{t} (1-\delta) + I_{t}, \quad 0<\delta<1 \tag{3}
Y^{_j}_{t} = \left(K_{t}^{_j}\right)^{\alpha^{_j}} \left(A^{_j}_{t} L_{t}^{_j}\right)^{1-\alpha^{_j}} \tag{4} with 0<\alpha^{_j}<1 and \alpha^{_j}\neq\alpha^{_{-j}}
K_{t} = K^{_C}_{t} + K^{_I}_{t} \tag{6} L_{t} = L^{_C}_{t} + L^{_I}_{t} \tag{7} Y^{_C}_{t} = C_{t} \tag{8} Y^{_I}_{t} = I_{t} \tag{9}
s^{_K}_{t} \equiv \frac{K^{_I}_{t}}{K_{t}} s^{_L}_{t} \equiv \frac{L^{_I}_{t}}{L_{t}}
k_{t} \equiv \frac{K_{t}}{A^{_I}_{t} L_{t}}
\begin{align} \frac{1}{q_{t}} \equiv \frac{P^{_I}_{t}}{P^{_C}_{t}} &= \frac{\alpha^{_C}}{\alpha^{_I}} \left(\frac{A^{_C}_{t}}{A^{_I}_{t}}\right)^{1-\alpha^{_C}} \left(k_{t}\right)^{\alpha^{_C}-\alpha^{_I}} \times \notag\\ &\quad \times \left[ \left(\frac{s^{_K}_{t}}{s^{_L}_{t}}\right)^{1-\alpha^{_I}} \bigg/ \left(\frac{1 - s^{_K}_{t}}{1 - s^{_L}_{t}}\right)^{1-\alpha^{_C}} \right] \end{align} \tag{10}
m^{_L}_{t} \equiv \frac{w^{_I}_{t} L_{t}}{Y_{t}} = \frac{\alpha^{_I} (1-\alpha^{_C})+ (\alpha^{_C}- \alpha^{_I}) s^{_K}_{t}} {\alpha^{_I} + \left(\alpha^{_C} - \alpha^{_I}\right) s^{_K}_{t}} \tag{11}
\frac{\mathrm{d} m^{_L}_{t}}{\mathrm{d} s^{_K}_{t}} = \frac{\left(\alpha^{_C} - \alpha^{_I}\right) \alpha^{_I}\alpha^{_C}}{\left(\alpha^{_C} s^{_K}_{t} + \alpha^{_I} \left(1 - s^{_K}_{t}\right)\right)^2} \tag{12}
Parameter | Value | Source/Calibration target |
---|---|---|
\beta | 0.96 | Prescott (1986) |
\phi^{-1} | 0.65 | Vissing-Jørgensen (2002) |
\delta | 3.8% | 1980–2024 average from Feenstra, Inklaar, and Timmer (2015) |
g^{_L} | 0.9% | 1980–2024 g^{_{Pop}} from US Census Bureau (2025) |
Parameter | Value | Source/Calibration target |
---|---|---|
\alpha^{_I} | 26% | Basu et al. (2013) |
\alpha^{_C} | 50% | 1980–2024 of q_{t}^{-1} and K/Y |
g^{_{A^C}} | 1.0% | 1980–2024 of q_{t}^{-1} and K/Y |
g^{_{A^I}} | 2.7% | 1980–2024 of q_{t}^{-1} and K/Y |
k_0 | 7.1 | Initial level of K/Y |
\begin{align} \left(1+g^{_{A^C}}\right)^{(1-\alpha^{_C}) (\phi - 1)} \left(1+g^{_{A^I}}\right)^{1-\alpha^{_C} (1-\phi)} \left(1+g^{_L}\right)^\phi = \\ = \left(\frac{k_{t}}{k_{t+1}}\right)^{\alpha^{_I} - \alpha^{_C} (1-\phi)} \left(\frac{s^{_L}_{t}}{s^{_L}_{t+1}}\right)^{1-\alpha^{_I}} \left(\frac{s^{_K}_{t+1}}{s^{_K}_{t}}\right)^{1-\alpha^{_I}} \times \\ \times \left(\frac{1-s^{_L}_{t+1}}{1-s^{_L}_{t}}\right)^{(1-\alpha^{_C}) (1-\phi)} \left(\frac{1-s^{_K}_{t}}{1-s^{_K}_{t+1}}\right)^{1-\alpha^{_C} (1-\phi)} \times \\ \times \beta \left[\alpha^{_I} \left(k_{t+1}\right)^{\alpha^{_I}-1} \left(\frac{s^{_L}_{t+1}}{s^{_K}_{t+1}}\right)^{1-\alpha^{_I}} +1-\delta\right] \end{align} \tag{13}
s^{_L}_{t} = \left[\frac{\alpha^{_I}}{1-\alpha^{_I}} \frac{1-\alpha^{_C}}{\alpha^{_C}} \frac{1-s^{_K}_{t}}{s^{_K}_{t}} + 1\right]^{-1} \tag{14} k_{t+1} = k_{t} \frac{1-\delta}{ \left(1 + g^{_{A^I}}\right) \left(1 + g^{_L}\right)} + \frac{ \left(s^{_K}_{t} k_{t}\right)^{\alpha^{_I}} \left(s^{_L}_{t}\right)^{1 - \alpha^{_I}} }{ \left(1 + g^{_{A^I}}\right) \left(1 + g^{_L}\right) } \tag{15} \begin{align} \lim_{t\to +\infty} \frac{\beta^{t}}{C_{t}^{\phi}} \frac{\alpha^{_C}}{\alpha^{_I}} \left(k_{t}\right)^{\alpha^{_C} - \alpha^{_I}} \left(\frac{s^{_K}_{t}}{s^{_L}_{t}}\right)^{1-\alpha^{_I}} \times\\ \times \left(\frac{1-s^{_L}_{t}}{1-s^{_K}_{t}} \frac{A_{t}^{_C}}{A^{_I}_{t}}\right)^{1 - \alpha^{_C}} K_{t+1} = 0 \end{align} \tag{16}
C_{t} = \left((1-s^{_K}_{t}) K_{t}\right)^{\alpha^{_C}} \left((1-s^{_L}_{t}) A^{_C}_{t} L_{t}\right)^{1-\alpha^{_C}} \tag{17} I_{t} = \left(s^{_K}_{t} K_{t}\right)^{\alpha^{_I}} \left(A^{_I}_{t} s^{_L}_{t} L_{t}\right)^{1-\alpha^{_I}} \tag{18} L^{_I}_{t} = s^{_L}_{t} L_{t} \tag{19} K^{_I}_{t} = s^{_K}_{t} K_{t} \tag{20} L^{_C}_{t} = L_{t} - L^{_I}_{t} \tag{21} K^{_C}_{t} = K_{t} - K^{_I}_{t} \tag{22} K_{t+1} = k_{t+1} A^{_I}_{t+1} L_{t+1} \tag{23}
\Pi^{_j}_{t} = P^{_j}_{t} Y^{_j}_{t} - W_{t} L^{_j}_{t} - R_{t} K^{_j}_{t} \tag{24}
q_{t} C_{t} + I_{t} \leq w^{_I}_{t} L_{t} + r^{_I}_{t} K_{t} \tag{25}
r^{_I}_{t} = \alpha^{_I} \left(\frac{s^{_L}_{t}}{s^{_K}_{t}}\right)^{1-\alpha^{_I}} \left(k_{t}\right)^{\alpha^{_I}-1} \tag{26}
w^{_I}_{t} = (1-\alpha^{_I}) A^{_I}_{t} \left(\frac{s^{_K}_{t}}{s^{_L}_{t}}\right)^{\alpha^{_I}} \left(k_{t}\right)^{\alpha^{_I}} \tag{27}
s^{_L}_{*} = \left[\frac{\alpha^{_I}}{1-\alpha^{_I}} \frac{1-\alpha^{_C}}{\alpha^{_C}} \frac{1-s^{_K}_{*}}{s^{_K}_{*}} + 1\right]^{-1} \tag{28}
Confirming our guess about the stationarity of s^{_K} and k:
\begin{align} s^{_K}_{*} &= \left[ \frac{ \left(1+g^{_{A^C}}\right)^{(1-\alpha^{_C}) (\phi - 1)} \left(1+g^{_{A^I}}\right)^{1-\alpha^{_C} (1-\phi)} \left(1+g^{_L}\right)^\phi }{ \beta \alpha^{_I} \left(\left(1 + g^{_{A^I}}\right) \left(1 + g^{_L}\right) - (1-\delta)\right) } - \right. \notag\\ &\quad \left.- \frac{1-\delta}{ \left(1 + g^{_{A^I}}\right) \left(1 + g^{_L}\right) - (1-\delta) } \right]^{-1} \end{align} \tag{29}
k_{*} = \left( \frac{ \left(s^{_K}_{*}\right)^{\alpha^{_I}} \left(s^{_L}_{*}\right)^{1 - \alpha^{_I}} }{ \left(1 + g^{_{A^I}}\right) \left(1 + g^{_L}\right) - (1-\delta) } \right)^\frac{1}{1- \alpha^{_I}} \tag{30}
\begin{aligned} g^{_{K^I}} = g^{_{K^C}} = g^{_K} = g^{_I} &= \left(1+g^{_{A^I}}\right) \left(1+g^{_L}\right) - 1 \\ g^{_{L^I}} = g^{_{L^C}} &= g^{_L} \\ g^{_C} &= \left(\frac{1+g^{_{A^I}}}{1+g^{_{A^C}}}\right)^{\alpha^{_C}} \left(1+g^{_{A^C}}\right) \left(1+g^{_L}\right) - 1 \\ g^{_{r^I}} &= 0 \\ g^{_{w^I}} &= g^{_{A^I}} \\ g^{_q} &= \left(\frac{1+g^{_{A^I}}}{1+g^{_{A^C}}}\right)^{1-\alpha^{_C}} -1 \end{aligned}
Variable | Value |
---|---|
s^{_K}_* | 14.47% |
s^{_L}_* | 32.50% |
k_* | 5.54 |
g^{_C}_* | 2.76% |
g^{_I}_*=g^{_Y}_*=g^{_K}_*=g^{_{K^C}}_*=g^{_{K^I}}_* | 3.62% |
g^{_{w^I}}_* | 2.70% |
g^{_{r^I}}_* | 0.00% |